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A simple model based on the interaction of ligand electron pairs and holes in the central metal charge distribution is used 
to rationalize the shapes of binary transition metal complexes. Only the orbital occupation numbers of the three highest 
d orbitals are important in determining the angular geometry, the deeper lying d orbitals being predominantly involved 
in r bonding. Depending upon how different the metal electronic charge distribution is from spherical, the overall geometry 
is sometimes intermediate between that demanded by these hole-pair forces and the structure with minimum ligand-ligand 
repulsion energy. Evidence is collected, suggesting that the first-order Jahn-Teller effect may be of secondary importance 
in determining these structures. The condition for successful use of the second-order Jahn-Teller effect is outlined. 

Introduction 
The geometries of transition metal complexes have, for some 

time, posed a problem for inorganic chemists. The VSEPR 
ideas of Sidgewick, Powell, Nyholm, and Gillespie,' so widely 
applied to main-group compounds, by experience are only 
readily applicable to transition metal systems containing a 
spherical electronic charge distribution (do, d5, and dlo). In 
the presence of nonspherical situations the metal charge 
distribution is arbitrarily assumed to adopt an ellipsoidal shape 
which may sometimes be rationalized with the observed ge- 
ometry.2 The regular structures of some 18-electron d6 and 
dS carbonyls and other complexes (e.g., Cr(C0)6 and Fe- 
(PF3)s) are explained away by assuming that, since the metal 
d electrons are involved in T bonding with the ligands, they 
are ignored in the electron count determining the number of 
u pairs. In this case the number of u pairs surrounding the 
central metal is equal to the number of two-electron u-donor 
ligands; octahedral and trigonal-bipyramidal (TBP) geometries 
are thus observed for Cr(C0)6 and Fe(PF3)5, respectively. 

One of the reasons for the slow development of theoretical 
ideas concerning the shapes of transition metal complexes has 
been the lack of good structural data. Few gas-phase ge- 
ometries are known (the carbonyls and PF3 complexes among 
them), compared to the data available for the main-group 
hydrides and halides for example. The solid-state structures 
of the transition metal halides are generally polymeric which 
makes it impossible to judge what the ideal "gas-phase'' 
geometry would be in the absence of intermolecular inter- 
actions. Only for the do-d4 hexafluorides MF6 and some of 
the pentafluorides and the tetrachlorides of Ti and V (do and 
dl)  are gas-phase structures of simple species readily known. 
However the synthesis in low-temperature matrices over the 
past few years of binary transition metal carbonyls and di- 
nitrogen complexes, accompanied by excellent geometrical 
data, has alleviated this problem immensely. The novel 
structures of these M(C0)x and M(N2)x species which contain 
less than 18 electrons present a challenge to the chemist who 
wishes to rationalize their shapes. The shapes of, for example, 
M(CX)4 species vary from the tetrahedral Ni(C0)4 through 
the D2d or C3v co(c0)4 ,  C2v Fe(C0)4, and square-planar 
Ni(CN)42- structures to the octahedral "cis-divacant" 
Cr(C0)4. 

We present in this paper a simple scheme, based on overlap 
between ligand u pairs and the holes in a nonspherically 
symmetrical charge distribution, to rationalize geometries either 
observed experimentally or predicted by recent molecular 
orbital calculations.3 
The Perturbation Result and Molecular Bonding 

The basis of the angular overlap method developed by 
Kettle,4 Jorgensen,sf~ and others is that the energy shift of an 
orbital Cpl on interaction with an orbital 41 is approximately 
given by second-order perturbation theory as psi12 where Srj 

is the overlap integral between + i  and 4j. The parameter p 
is a measure of the strength of the interaction between the two 
and among other things is inversely proportional to the energy 
separation between the two unperturbed orbitals. A rela- 
tionship of this type is also found by the completely equivalent 
method of ignoring terms in S4 and higher powers in the 
binomial expansion of the secular determinant as is shown in 
the Appendix. Thus for main-group molecules of the type AYn 
where a central A atom is surrounded by n u ligands (Y), the 
total stabilization due to interaction of the orbitals of the central 
atom with the ligand a orbitals will be 

A(I'j) and u(rj)  are respectively an orbital or group of orbitals 
located on the central atom and the ligand group of u orbitals 
transforming under the j th  representation of the molecular 
point group. nj is the number of electrons occupying the 
bonding orbital(s) between A and Y which transform as rj. 
In compounds of this type where all the bonding orbitals are 
filled (e.g., "3) eq 1 may be rewritten as 

where gJ is the degeneracy of the j th representation. The group 
overlap integrals S are dependent upon the angles the A-Y 
u bonds make with an arbitary axis system and may be 
analytically expressed as a product of Sg(r )  (where r is the 
A-Y bond length, held constant) and functions of the spherical 
harmonics Yi ,m(~,  4). The angular geometry exhibited by the 
AYn molecule will then be determined by the maximum value 
of the term E(u) in eq 2 ,  since this represents the maximum 
overall angular A-Y stabilization. This geometry will be 
independent of the parameter P and the values of the nl. It 
has been noted previously7-9 that the minimum-energy mo- 
lecular orbital structure is that of maximum central atom 
orbital-occupied ligand orbital overlap as is also suggested by 
eq 2 .  These maximum overlap structures correspond to the 
ones predicted by the VSEPR approach given the total number 
of u pairs and surprisingly may be evaluated within the confines 
of simple Huckel theory.7 Inclusion of .R bonding between A 
and Y leads to an analogous term Z(.R), evaluated in a fashion 
similar to eq 1 

Z(n) =ii,7njs2 IAVj); 7i(rj>I ( 3 )  

Because A-Y r overlap integrals are generally smaller than 
their u counterparts, Z(a) is expected to be smaller than Z(u) 
and therefore exert a correspondingly smaller influence on 
molecular geometry. In the VSEPR method .R interactions 
are generally ignored in determining the gross angular ar- 
rangement of the ligands. Equations 2 and 3 tell us nothing 
very new about the factors influencing the molecular geometries 
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of main-group compounds but set the stage for discussion of 
transition metal complexes, 

W e  shall assume for simplicity that the geometry of these 
species is determined predominantly by interactions between 
the ligand orbitals and the metal nd orbitals. The ( n  + 1)s 
orbital closest to the metal nd orbitals is spherically sym- 
metrical. The overlap integrals of eq 2 irivolving it will 
therefore be isotropic and of no imporrance in this scheme and 
therefore to first order a t  least in determining the angular 
naolecular geometry. The vital difference between the 
main-group AYn structures and the binary transition metal 
MYN ones is that on a molecular orbital basis the M-Y u- 
antibonding orbitals (predominantly metal nd) are generally 
occupied (dl-dlo). Thus the total u stabilization becomes 

q a ~  = - nj)sz [d(rj); a(rj>i (4) 

where nj  is now the number of antibonding M-Y electrons in 
the d orbitals of the gj degenerate j t h  representation. This 
is assuming that the destabilization afforded by an electron 
in an M-Y a-antibonding orbital is equal to the stabilization 
exerted by an electron in the corresponding bonding orbital. 
Equation 4 may be simply rewritten as 

Z(U) =P,@,S~ I [d(rj); u(rj)J (5  1 
where hj is the iiumber of holes in the d-orbital manifold. 
Hence for the case of u-donor ligands, the geometry with the 
maximum stabilization predicted by eq 5 is that where there 
is greatest overlap between the holes in the metal charge 
distribution with the occupied ligand u orbitals, i.e., maximum 
coincidence of regions of high electron density (pairs) with 
those of low electron density (holes). The overall equilibrium 
geometry will then be a compromise between the structure 
demanded by maximum hole-pair overlap and that reached 
by minimizing interactions between the ligands. These will 
consist of nonbonded interactions and the forces of interaction 
between the ligand pairs so important in the VSEPR approach. 
W-e shall call these interactions ligand--ligand interactions. The 
hole-pair forces are expected to be the larger of the two since 
they derive from directly bonded rather than nonbonded 
interactions. Some idea of the relative importance of these 
two types of interaction may be obtained by comparing the 
angle bending force constants of Ni(CO)4 and Cr(COI)6. The 
tetrahedral geometry of the dl0 nickel complex is determined 
by ligand-ligand interactions; 2(u)  of eq 5 is identically zero 
since there are no holes in the d-orbital manifold. By way of 
contrast the Cr(CO)6 molecule is held in the octahedral 
geometry by a combination of these forces and the hole-pair 
interactions of eq 5 .  As a result the chromium force constant 
is several times larger than its nickel counterpart.10 

If fi!led T orbitals are included on the ligands, then a term 
Z(n) has to be added to Z(u), and the total stabilization now 
becomes a weighted mean of that determined by overlap of 

pairs and metal holes and that determined by overlap of 7r 
pairs and metal holes. To a good approximation however the 
7r term may probably he neglected in determining the angular 
molecular geometry (vide supra).  It is interesting to note 
however that if empty n* orbitals are available on the ligands, 
then, ignoring the filled ligand n type orbitals 
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One important property of the .X fvncrions that we shall find 
useful, is that, Z(u) for example is independent of angle if all 
the d orbitals with nonzero a interactions contain equal 
numbers of electrons, i.e., zero, one, or two electrons. This 
is nothing more than a specific example of the generalized 
Unsold theorem (see for example ref 11) which states that the 
function Z4j2 is invariant under all operations of the point 
group for which the 4jform the basis of an irreducible rep- 
resentation, i.e., is spherically symmetrical. For example the 
configuration t23 is spherically symmetrical in the tetrahedral 
point group since the function (xy)2 4- ( x z ) ~  -d- @z)2 is invariant 
under all rotations and thus all rotations of the point group 
Td. (The only nonzero metal-ligand u interactions in this point 
group are of species t2.) On the occasion when the function 
Z(u) (neglecting B(x)) is independent of angle due to the 
correct occupation numbers of the d orbitals, then the resultant 
structure is determined purely by VSEPR type interactions 
between the ligand pairs. Thus, whereas for main-group 
molecules the VSEPR structure and the arrangement of 
maximum overlap of eq 2 correspond to the same angular 
disposition of the ligands, for the transition metal series, the 
VSEPR geometries and those predicted by eq 5 are not 
necessarily the same. 

Determination of the E q ~ i ~ ~ h r ~ ~ ~  G e ~ ~ ~ ~ ~ ~  
I t  has been noted in the previous section that n interactions 

are probably very much less important than their u count- 
erparts. We need then only to determine the geometry which 
will give the maximum value of Z(u) in eq 5 with a given 
d-electron configuration. In general the deeper lying d orbitals 
will be mainly concerned with T interactions with the ligands, 
whereas the higher lying orbitals will be mainly concerned with 
the much more energetic and structurally more important u 
interactions. For the five-coordinate TBP structure, the 
four-coordinate tetrahedral structure, and the three-coordinate 
trigonal (D3h) structure for example the lowest pair of d orbitals 
in each case are solely concerned with n interactions. ]In all 
geometries where the ligands lie a t  the vertices of an octa- 
hedron, the lowest three orbitals are purely involved in H 

bonding. In our considerations of the molecular geometry 
problem we shall therefore ignore the presence of any holes 
in the lowest two d orbitals since these will be structurally 
impotent and focus our attention on the holes in the three 
highest energy d orbitals. Parenthetically we note that in this 
observation lies the explanation of Gillespie’s7- remark “when 
the number of d electrons is small, typically one to three, the 
interaction of the d shell with the bonding electrons is generally 
weak and any distortion of the arrangement of bonding pairs 
appears to be negligible or a t  least too small to be seen.” In 
d5 V(CO)6 and several do-d4 haF6 species, where all the 
u-antibonding orbitals are empty, the VSEPR octahedral 
geometry is therefore observed. Where the pureiy n-bonding 
t2g set of orbitals do contain holes, small distortions of the 
dynamic type are often observed but no large-scale structural 
distortions comparable to the ones we are about to describe. 
Since we thus surmise that the term Z(n) is much less im- 
portant than Z(u), the conclusions will be applicable to all 
binary metal-ligand systems containing monodentate ligands, 
irrespective of whether the ligands are H donors or acceptors. 

The sum total stabilization of the ligand a orbitals (and 
hence approximately the sum total destabilization of the metal 
d orbitals) can be readily shown from eq 5 to be5 equal to 
n/3Sa2 where n is the number of ligands and So is the overlap 
integral between a ligand u orbital and one lobe of the d,: 
orbital. Thus the total d orbital destabilization in a four- 
coordinate tetrahedral complex is 4/3,Sa2. Since in this ge- 
ometry the total metal-ligand a interactions are contained in 
the t 2  representation, the separation between the t2 arid e sets 
of d orbitals is then 4/3paS02~ The total stabilization energy 

instead of the corresponding hole equation. Thus in the case 
of a r donor (filled n orbitals reasonably close to the d orbitals) 
the maximum r stabilization arises through overlap of T pairs 
with metal holes, whereas for a r-acceptor ligand, the 
maximum stabilization occurs for the geometry where there 
is greatest overlap between the filled (or partially filled) metal 
d orbitals with holes in the ligand n*  orbitals. 
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D a. b. D 
Figure 1. The two possible geometries for four-coordinate com- 
plexes based on the octahedron: (a) the square plane and (b) the 
cisdivacant (or double-tailed T) structure. 

Z(u) from eq 5 for a dg system (d-orbital occupation numbers 
22220) is thus 2.67pS2. However, it is readily appreciated 
that this geometry does not give rise to the maximum sta- 
bilization required by eq 5. This will occur for maximum 
ligand pair-hole overlap and as will be shown below, but may 
be readily visualized here, is found for the configuration where 
the ligand pairs overlap the lobes of the d+p orbital, i.e., the 
square-planar geometry. Here the destabilization of the dXLp 
orbital is found to be 3PuS,2 and thus that of the dZ2 orbital 
is PUS$. The total stabilization energy for the 22220 con- 
figuration in the square-planar geometry is thus 6puSu2, sizably 
larger than Z(a) for the tetrahedral structure. In agreement 
with these ideas, although d*O Ni(C0)4 is tetrahedral, the two 
low-spin d* systems AuC14- and Ni(CN)$- are both square 
planar. For the dlo structure of course Z(a) = 0 for all angular 
geometries and the structure is determined purely by VSEPR 
forces. 

For the configuration 22200, holes are now present in the 
two highest energy orbitals. As noted above these two orbitals 
will contain the total u interaction for a geometry where the 
ligands occupy the vertices of an octahedron. This condition 
is satisfied for both the square-planar and cis-divacant 
structures of Figure 1, both of which have values of Z(u) = 
8PuSu2 for the configuration 22200. We need to go a little 
further than eq 5 to decide which of the two structures will 
be of lower energy. By considering terms in S 4  we can readily 
show (Appendix) that the cis-divacant structure is favored 
relative to the square-planar one for this electronic config- 
uration. The preference for orthogonal ligand geometries is 
seen in a tabulation of C-M--C bond angles in substituted 
metal carbonyls.4 Particularly noticeable are M(C0)3 groups 
with pseudocylindrical symmetry where C-M-C bond angles 
of ca. 90° are seen. In less symmetric structures the bond 
angles are close to but usually greater than 90’. 

Four-Coordination 
We start with this coordination number since most of the 

main points of the method are readily illustrated in the ra- 
tionalization of the five different observed geometries for these 
systems. The VSEPR structure for four ligand pairs is a 
regular tetrahedron and this structure is expected and observed 
for the spherically symmetrical d10 Ni(C0)4 molecule and Ni 
group four-coordinate N2 and CO compounds.12 Deviations 
from this geometry, where ligand pair-ligand pair repulsions 
are minimized, will arise through competing ligand pair-metal 
hole interactions described by eq 5. If the occupation numbers 
of the lowest pair of orbitals are not important as we have 
suggested above, then the tetrahedral structure should be 
observed for all systems with a 11 1 or 222 occupation of the 
higher lying orbitals. (This therefore includes the configu- 
rations 21 11 1 and 221 11, and indeed high-spin d6 and d7 
tetracarbonyls were found to be tetrahedral in our previous 
calculations.)3 If the spherically symmetric situation 222 or 
11 1 is destroyed by removing one or two electrons from the 
highest energy orbital to give the electron configurations 220, 
221, or 110 (these are the orbital occupation numbers of the 
three highest energy d orbitals), then the geometry where 
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a. b. 

Figure 2. Four-coordination: (a) overlap of four ligand u orbitals 
with the lobes of d,z+,z in the square-planar geometry; (b) overlap 
of four ligand u orbitals with dZ* in the cis-divacant geometry (for 
the sake of clarity the ligand “lobes” are not shown). 

maximum ligand-hole overlap occurs is not the tetrahedral 
structure but the square-planar arrangement of Figure 2a as 
suggested above. In this geometry the dX2-y2 orbital is the 
highest energy orbital. An alternative structure might be the 
“cis-divacant” octahedral structure ( C ~ V )  of Figure 2b where 
two ligands directly overlap the lobes of the dZ2 orbital and 
the other two lie perpendicular to it. In this geometry, the 
highest energy d orbital is dz2 and thus the holes must appear 
here rather than in the more stable d+y2 orbital. This axis 
system, based on that of the octahedron, is chosen in preference 
to one where the z axis contains the twofold axis. The ad- 
vantage of the system used here is that only two group u- 
overlap integrals (with dz2 and dx2-p) are nonzero and these 
belong to different irreducible representations. (Under the 
C2” point group, where the z axis contains the twofold axis, 
dZ2 and dX2+ both transform as a i  and would thus mix to- 
gether.) We may readily show the structure of Figure 2a to 
be energetically favored by evaluation of the S2 function in 
eq 5 .  For the structure of Figure 2b the group overlap integral 
of the four ligands with the dZ2 orbital is given by the overlap 
of the function 

1 
42 = 1oL/2(20$ + 202 - 03 - 04) 

with the dz2 orbital. This is equal to (1/101/2)(5Su), where 
Su is the overlap integral of a ligand u orbital located on the 
z axis with one lobe of the dZ2 orbital. (The overlap integral 
of cr3 or a4 with the “collar” of dz2 is l/zSu.) Thus S2 = 2.5S2. 
For the structure of Figure 2a the group overlap integral of 
the four ligands with the dx2-p orbital is given by the overlap 
of the dXLp orbital with the function 

~ 

4 x 2 - y 2  = ‘/?(a1 + a2 - ‘53 - a4) 

and is equal to 3lkS’u. (The overlap integral between a ligand 
cr orbital and one lobe of a dX2-y2 orbital is (31/2/2)Su.) S2 
for this structure then becomes 3 S 2 ,  i.e., a more stable ar- 
rangement than that of Figure 2b. For the tetrahedral ge- 
ometry, S2 is a mere 1.3S2. Thus the square-planar geometry 
is observed for diamagnetic (low-spin) Nil1 and AuIIl species 
as described above. Creation of holes in the two highest energy 
metal d orbitals (200, 21 1, or 100) leads to a slightly more 
complex situation. In order to elucidate the geometry with 
the largest value of Z(u) we must remember that the two holes 
must occupy the two highest energy d orbitals of that geometry. 
As noted above this will be an arrangement where the ligands 
occupy the corners of an octahedron and of the two possible 
structures, the cis-divacant one should be favored. Creation 
of three holes gives the spherically symmetric configuration 
000 which of course leads to the VSEPR-determined tetra- 
hedral geometry. 

For the d6 species Cr(C0)4 (200) the cis-divacant geometry 
as been experimentally observed13 whereas the dg species 
Fe(C0)4 (21 1) has been shown14 to exhibit a C2v structure 
with bond angles of -120 and - 140’. Most high-spin NiII 
complexes are distorted from the strictly regular tetrahedral 
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Table 1. Values of x(u)  for Different FourCoordinate 
Structures (Units of puSOz) 

Jeremy K. Burdett 

Square Tetra- Cis di- 
planar hedral vacant Obsd geometry 

_I___.- 

2 2 2  0 0 0 Tetrahedral Nio 

220 6.0 2.7 5.0 Sq-planar MI1 
210 7.0 4.0 6.5 
211 4.0 2.7 4.0 C,, dist. tetrahedral Ni" 
200 8.0 5.3 6.0 Cis-divacant Cro 
111 4.0 4.0 4.0 Tetrahedral Co" 
110 7.0 5.3 6.5 
100 8.0 4.7 8.0 
000 8.0 8.0 8.0 Tetrahedral TiC1, 

Td geometry to give a similar c2~ or c, structure. These 
structures are intermediate between the VSEPR tetrahedral 
geometry (angles 110, 110") and the hole-pair determined 
structure (angles 90, 180"). This observation may be un- 
derstood in the following way. The driving force from the 
tetrahedral geometry will depend qualitatively on the extent 
of the deviation from the spherically symmetric 222 or 11 1 
configurations. Thus the angular distorting forces from the 
VSEPR geometry are expected to be larger for the 200 and 
100 configurations than for the intermediate 21 1. This is seen 
above in the equilibrium Cr(C0)4 and Fe(C0)d geometries. 
In the former (200) the geometry is determined by the 
hole-pair interactions of eq 5;  in Fe(c0)4 however the overall 
geometry is a compromise between the directly bonded 
hole-pair forces and the nonbonded ligand--ligand forces. 
These data give us an idea as to the size of the ligand-ligand 
forces in terms of the stabilization energy of eq 5. For the 
configuration 200 the total value of Z(g) for the cis-divacant 
geometry is 8puSu2 and for the tetrahedral geometry 5.3PuS,*, 
a difference of 2.7PuS$. For the 21 1 configuration the energy 
difference is half of this value, i.e., 1.3puSu2. This energy 
difference is thus insufficient to overcome the increase in 
ligand-ligand repulsion energy on moving from the tetrahedral 
geometry (bond angles 110") to the cis divacant structure. 
Support for these ideas comes from our previous molecular 
orbital calculations.3 For the 220 and 110 configurations the 
square-planar geometry is calculated to have the lowest energy. 
For 200 and 100 the cis-divacant structure is favored. For 
21 1 the C2" Fe(CO)4 geometry is predicted with bond angles 
close to those experimentally observed. (The angles of the 
calculated geometry may be slightly varied of course by 
choosing a different parametrization in the molecular orbital 
method.) For 221 a D2d structure with bond angles of 132" 
(i.e., halfway between square planar and tetrahedral) was 
found. Experimentally there is some controversy~s~l~ over the 
geometry of d9 Co(c0)4  which has this configuration; both 
D2d and C3V structures have been claimed. It is certainly 
neither tetrahedral nor square planar. Complexes containing 
CUI] give us more definitive data concerning the shapes of 
four-coordinate complexes with the 22 1 electronic configu- 
ration. Both square-planar geometries17 (e .g . ,  CuC142- in 
(NH4)2CuCI4) and squashed tetrahedra of the D2d point group 
(e.g., CuC142- in CszCuC14) have been observed'* in agreement 
with our ideas. 

For the d7 21 0 electron configuration the square-planar 
geometry is predicted but no experimental data are available. 
(Four-coordinate Cor1 (d7) species are tetrahedral in agreement 
with the high-spin configuration 11 1 for this system.) Table 
1 shows the calculated values of Z(cr) for the various structures, 
as a function of electron configuration, and some examples 
of the observed geometries. 
Two-Coordination 

The VSEPR geometry is of course the linear arrangement. 
This geometry should then be favored for dlo species (222) 
by virtue of VSEPR forces since Z(cr) = 0 as has been ex- 

221 3.0 1.3 2.5 D,d,D,h S q - p h a r  CU" 

Figure 3. Three-coordination: Overlap of three ligand u orbitals 
with the lobes of d,2-yZ in the T geometry (for the sake of clarity 
the ligand "lobes" are not shown). 

5 
Figure 4. Three-coordination: The C,, geometry for three 
metal ligand bonds at right angles to one another. 

perimentally confirmed12 for the Wi, Pd, Pt, N2, and CO 
complexes and several two-coordinate compounds of CUI. For 
this linear structure the total cr interaction is contained in the 
og+ representation. The single d orbital of this species is thus 
destabilized by 2puSu2 and this structure should therefore be 
observed for the 220 configuration and indeed for the 221 
system. For the 200 configuration the linear and bent geom- 
etries (L-M-L angle 90") become equally favored by eq 5 but 
our previous arguments would suggest that the bent geometry 
is more stable. Thus for the electronic configurations 200 and 
100 the theory outlined in this paper predicts that the 90" 
geometry should be seen, for 211 a structure somewhere 
between the linear and 90" geometries should be observed, and 
for all others the linear arrangement is expected. Apart from 
the dlo systems, the only available. experimental data concern 
the d7 (210) species CoIIN(SiMe3)2 which in agreement with 
theory is linear.19 
Three-Coordination 

The VSEPR geometry for these species is the flat D3h 
structure. This geometry has been experimentally observed 
for dlo Ni(C0)3 and other tris N2 or CO Ni-group systems 
and dlosl Ni(C0)3- 20 and Cu(CO)?.21 Creation of a hole 
in the highest energy d orbital (220 or 11 0) leads to an in-plane 
distortion to give a planar T-shape structure (Figure 3) where 
the hole-pair overlap is a maximum with the dXzp  orbital (S2 
= 9/4S02). This is a situation very similar to that observed 
with a single hole in the four-coordination case. After the 
discussion of the previous section, the configuration E21 is 
expected to give rise to a smaller distortion from D3h. Our 
previous molecular orbital calculations gave3 values of a 
70" for 220 and 110 and - 150" for 221 in agreement with 
these ideas. Two holes in the top two d orbitals should lead 
analogously to a structure based on the cis-divacant structure 
of the four-coordinate complex. If either A or D is removed 
from Figure l b  a C ~ C  structure with all bond angles betwcen 
the ligands of 90" is achieved (Figure 4). This geometry has 
a droop angle from planar (D3h) of about 32". Our previous 
molecular orbital calculations3 arrived at C3> structures with 
droop angles of about 30" (for 200 and 100) and 17" for the 
less dynamic 21 1 structure. Experimentally Cr(CO)3 (200) 
is found13 to have a droop angle of -25" whereas Fe(C0)3 
(21 1) is found22 to have an angle of 18 f 3" in good agrccmcnt 
with these ideas. The T-shape structure is predicted for the 
2 10 species but no experimental information is available for 
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Table XI. Values of C(u)  for Different Threecoordinate 
Structures (Units of puSu2) 
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Table 111. Values of C(u)  for Different Five-Coordinate 
Structures (Units of puSuz) 

Planar 
T shape D 3 h  

222 0 0 
221 2.25 1.125 
220 4.50 2.25 
210 5.25 3.375 
211 3.00 2.25 
200 6.0 4.50 
111 3.0 3 .O 
110 5.25 4.125 
100 6.0 5.25 
000 6.0 6 .O 

Pyramidal 
(90”) Obsd geometry 

0 D3h Ni’, Ni- 
1.5 
3.0 
4.5 
3.0 C,,Fea 
6.0 C,,Cr’ 
3 .O 
4.5 
6.0 
6.0 

a. b. ‘5 
Figure 5 .  Five-coordination: (a) overlap of five ligand u orbitals 
with dX2+,2 in the square-pyramidal geometry; (b) overlap of five 
ligand u orbitals with dZ2 in the trigonal-bipyramidal geometry (for 
the sake of clarity the ligand “lobes” are not shown). 

three-coordinate species with this configuration. For systems 
with spherically symmetric charge distributions the D3h 
structure is observed as noted above for dl0 Ni(C0)3. Here 
Z(u) = 0. This planar structure is also seen23 for the d5 species 
FeIII[N(SiMe3)2]3 as befits a 11 11 1 high-spin configuration. 
Table I1 lists the total calculated stabilizations from eq 5 for 
each of the possible geometries. Unfortunately the number 
of well-defined three-coordinate complexes is small. 
Five-Coordination 

The equilibrium geometries for the tri- and tetracarbonyls 
containing a hole in one d orbital were based upon maximum 
overlap of the ligand u pairs with the lobes of a d+p orbital. 
With five ligands the arrangement where four of the pairs 
overlap these four lobes and the fifth ligand does not interact 
with the hole is the square-pyramidal (SPY) C4v structure and 
is favored energetically compared to the D3h structure where 
all the ligands may overlap with the (now highest energy) d,z 
orbital (Figure 5). This is contrary to experience since ds 
Fe(C0)5 with one hole has an experimentally determined D3h 
and not C4V structure. The two are indeed close together in 
energy as evidenced by rapid axial-equatorial ligand ex- 
change.24 One of the suggested mechanisms of this process 
occurs via distortion of the D3h geometry to C4” and back again 
(the Berry mechanism). This fact is underlined by comparing 
the smaller calculated energy difference for 220 between the 
two structures (Table 111) than between the tetrahedral and 
square-planar structures for the four-coordinate case (Table 
I). Indeed for almost any electronic configuration there is quite 
a small calculated energy difference between the TBP and SPY 
geometries. In fact the true energy differences will be even 
smaller since the calculated stabilization for the SPY structure 
in Table I11 is for the arrangement where all L-M-L bond 
angles are 90 or 180’. The actual ML5 molecule will have 
a nonzero “droop” angle with a concurrently smaller stabi- 
lization. Dependent upon the size of yu (see Appendix), 
inclusion of the quartic term might even tip Z(a) in favor of 
the TBP structure for 220. 

This energy difference may also be compared to the dif- 
ference in energy between the tetrahedral and cis divacant 
structures of l.3puSu2 for the 21 1 tetracoordinated case. In 
this circumstance the observed Fe(C0)4 geometry was halfway 

Trigonal Square 
bipyramid pyramid Diff 

222 0 0 0 
22 1 2.15 3 0.25 
220 5.5 6 0.5 
210 6.625 8 1.3 
211 3.875 5 1.2 
200 1.75 10 2.25 
111 5 5 0 
110 7.75 8 0.25 
100 8.875 10 1.3 

between that determined by ligand-ligand repulsion effects 
and that demanded by the eq 5. In the more crowded situation 
of the five-coordinate structure the ligand-ligand terms should 
be even larger. This closeness in Z(a) for the two structures 
implies that steric and crystal effects will be important in 
deciding the overall geometry and in many solid-state structures 
the observed disposition of the atoms is intermediate between 
the two (C2”). It is noted that the largest stabilization of the 
C4v geometry relative to TBP is found for the 200 configu- 
ration. d6 Cr(C0)5 (200) has been found25-27 to have this 
geometry whereas Fe(C0)s is TBP. Similarly the C4” ge- 
ometry has been observed for the d7 (210) system Ke(C0)5.21 
Some of the salient points of the photochemistry of the d6 
pentacarbonyl may be explained28 using a TBP excited state 
(110). 
Six-Coordination 

The hypothetical 222 (22-electron) molecule should exhibit 
the regular octahedral VSEPR structure. The presence of one 
hole in the d-orbital manifold will still result in the octahedral 
geometry since maximum ligand-hole overlap between the 
dX2-9 or d 9  orbitals occurs for this structure. The presence 
of two holes will also require the octahedral arrangement. This 
geometry is observed for d6 Cr(C0)6. For V(CO)6 a hole is 
also present in the t2g (purely rr-bonding) d orbitals. Ex- 
perimentally no static structural distortion has been observed, 
purely a dynamic one commensurate with the expected sizes 
of 8(~) compared to Z(u). The model thus predicts octahedral 
angular geometries for all hexacoordinated systems, irrespective 
of the number of d electrons, and is confirmed by the ob- 
servation of basically octahedral geometries for d0-d4 MF6 
species, V(CO)6 and Cr(C0)t;. Our remarks however do not 
preclude a distortion to, e.g., . h h  via contraction or extension 
of two axial ligands; our model assumes equal lengths for all 
M-L bonds. For a d8 (220) or d9 (221) system, for example, 
with a hole in the d x i p  orbital anid with a nonzero equatorial 
bond strength, from eq 5 we find a zero bond strength between 
the metal and axial ligands. This point has interesting 
consequences when applied to CUI‘ (d8) systems (Jahn-Teller 
unstable) and NiII (d8) systems (square-planar-octahedral 
isomerization) .29 

For a system containing holes in two orbitals (eg., 200) the 
holes appear in dzz as well as dX2-y and thus all bond lengths 
should be equal. 
Connection with the Jahn-Teller Theorems 

In several cases the predicted Jahn-Teller instability of 
Certain structures based on the symmetry species of the 
electronic state concerned is not found either by experiment 
as a distorted equilibrium geometry or by earlier molecular 
orbital calculations.3 These occurrences however are always 
concerned with the presence of holes in purely r-bonding 
manifolds and represent the smaller structural effect of Z ( r )  
compared to Z(u). Often, of course, dynamic effects are 
observed. More significant is the fact that some of the dis- 
tortions observed from the symmetric ligand-ligand repulsion 
structures are not allowed30 as distortions under the first-order 

_. 



8 Inorganic Chemistry, Vd .  14, No. 2, 1975 

Jahn--Teller theorem for any species of electronic state. For 
example 
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information is obtaiiied concerning the net destabilization of 
the two highest orbitals which from eq 5 is the energy term 
we need to consider. These remarks, however, rpuggcst that 
the pseudo Jahn-Teller effect should be applicable to low-spin 
d8 and d9 systems (220, 221) wliere only one orbital is vacant. 
For three-coordinate systems as noted above an e' distortion 
is predicted. This is equivalent to the T-shape distortion from 
D3h demanded by eq 5 for these systems. For such IE'(d8) 
and zE'(d9) however this e' vibration also relieves the orbital 
degeneracy via the first-order Jahn-Teller effect predicted to 
occur here but In view of our discussion above this may not 
be important. For the four-coordinate tetrahedral system 220 
the singlet manifold contains lAi, 'E,, and lT2. The IAi state 
lies to higher energy than thc other two states which are 
isoenergetic. The transition IT2 --p liii leads to a transition 
density of s p i e s  t2. The bending vibration of this species sends 
the tetrahedral into a C'L~ geometry. The transition ]E - 1Ai 
on the other hand leads to a transition density of species e which 
sends the tetrahedral geometry into the square-plana 
predicted by eq 5 .  

For the five-coordinate TEP structure the pseudo Jahn -- 
Teller active vibration is of species e' (transition from e' to ai' 
orbital). This vibration converts the liP3h to the Cil, geometry. 
The second-order Jahn-Teller predicted geometry is thus also 
the one found to be of lowest energy by evaluation of eq 5 .  
The other situation where the structural predictions of the 
pseudo Jahn-Teller effect should be valid is where there are 
no d electrons at  all. Here there are no electrons i n  metalk 
ligand antibonding orbitals and the interaction between the 
central atom and ligands will be described by eq 2 rather than 
eq 5 .  This discussion should be sufficient to warn against a 
straightforward application of the pseudo .Tahn-Telier rules 
for transition metal systems. 
Hybrid-Orbital A ~ ~ ~ ~ a ~ ~  

The ideas of hybridization and directed valence developed 
by Pauling and others35 give surprisingly similar structures 
(Table IV) to those predicted using eq 5 for several systems. 
An asterisk labels the structures which are different on the 
two schemes. For the four-coordinate species the do systems 
have been shown to be tetrahedral (e.g., Vch).  Similarly PFs 
is a good example of a do system where the trigonal- 
bipyramidal structure is observed and not the bizarre 
pentagonal-pyramidal structure. For the six-coordinate series 
octahedral geometries are observed for the do, d2, and d4 
hexafluorides. Thus with the sole exception of the five- 
coordinate 22220 geometry the hybrid-orbital approach gives 
the same geometries as eq 5 for d6, d8, and dl0 species. 
Disagreement is limited to the do, d?, and d4 systems where 
the hybrid scheme predicts some unusual shapes which are not 
experimentally observed. The method also does not allow 
five-coordinate structures with the dlo configurations, six- 
coordinate structures with the d* or dlo Configuration the 
restrictions of the 18-electron rule), or odd-electron species 
in general. 
Discussion 

The format of eq 2 and 5 indicates why simple molecular 
orbital methods may be used to obtain the angular disposition 
of ligands arounde? central atom. For the main-group systems, 
Gavin's simple Huckel approach7 and, for the transition metal 
complexes, the calculations by this author3 using an extended 
Huckel method have succeeded in a field where theoretical 
complexity abounds. Equations 2 and 5 suggest that the 
maximum angular stabilization as determined by central 
atom-ligand forces is a function purely of the molecular orbital 
occupation numbers and the spherical harmonics Yim(0, 4). 
Thus any simple scheme which calculates overlap integrals as 
functions of angle should be successful. This structure may 
be modified somewhat in the transition metal case by lig- 

squdre-planar (not Jahn-Teller allowed) 
WCQ), 

T'd \c3", c,,, Dzd (Jahn-Teller allowed) 

(no1 Jahn-Teller allowed) 
M(OO), 

D3h 

One conciusion is that the structural effect of the Jahn- 
Teller theorem can be viewed as a special case of the hole-pair 
approach in situations where orbital degeneracy occum. This 
point is especially interesting since the Jahn-Teller effect itself 
i s  often regarded from the viewpoint of holes appearing in 
spherically symmetric charge distributions. 

Sometimes the observed "Jahn-Teller" distortion from the 
symmetrical structure is larger than intuition woii Id lead one 
to expect.14 This also suggests another force operative in 
determining the geometries of these systems. (In this light, 
it is interesting to recall the comment of Kettle and Jotham30 
that it is possible that no true Jahn-Teller distcrrted structure 
has beer? observed.) Thus whereas all the distortions from the 
symmetric VSEPR-determined structures can be rationalized 
by considering the forces between the holes and ligand pairs 
irrespective of the species of the ground electronic state,31 the 
Jahn -Teller contribution is restricted to those systems where 
the electronic ground state is orbitally degenerate and may 
be m a l l  by comparison. Our point is therefore that the 
impxtance of the Ja hn-Teller effect in dutermining molecular 
geometries (as distinct from small dynamic effects) has been 
very considerably overemphasized in the past. Interestingly 
only small (dynamic) "Jahn-Teller" effects are observed in 
orbitally degenerate systems when Z( n) is angle independent 
(e.g., V(C0)6, ReF6) and the angular geometry is controlled 
by VSEPR and E:(..) forces. Whereas the size of the 
Jahn -Teller distortion energy is not readily calculable, the 
opposite is true of Z(a) for a particular geometry and electronic 
configuration. This makes the present method a more powerful 
approach for determining molecular shapes. 

The structural predictionssJ2~33 of the second-order (pseudo) 
Jahn-Teller effect are also found generally to give rise to 
experimentally unconfirmed geometry changes. For example 
the reference geometry for the three-coordinate system is the 
trigonal plane and the d orbitals are split into three sets, e", 
all, e' (deepest lying first). The structural predictions of the 
theory suggest transition densities of species e" ( i . e . ,  no 
distortion) for low-spin dl-d.1 systems; this arises through the 
promotion of an electron fyom the e" to ai '  orbital. For d549 
systems the transition ai '  to e' is possible leading to a predicted 
distortion of species e', i . e . ,  to a T-shaped molecule. This is 
certainly not experimentally observed for the d6 and d8 
chromium and iron tricarbonyls. On closer examination we 
would not expect the second-order Jahn-Teller theorem to 
predict the angular geometries of these d l 4 9  systems although 
it has been used to rationalize the magnitude and sign of 
various stretching vibrational constants in metal  carbonyl^.^^ 
The w ~ v e  function of the ground state (0) becomes on distortion 

C,, (% nhape) (Jahn-Teller allowed) 

Xi is the first derivative of the electronic Hamiltonian with 
respect to the normal coordinate qi and the admixture of Im) 
into the ground state on distortion via qi depends upon the 
overlap between 110) and Im) and on the zeroth-order energy 
separation between them. As a result 10) is depressed and lm) 
raised in energy on distortion by this interaction. For the 200 
system for example although the highest energy orbital may 
be destabilized during a particular distortion via eq 6, no 
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00000 20000 22000 22200 22220 22222 
2-coordinate Hybrid 

orbitals 
This work 

orbitals 
This work 

orbitals 
This work 

orbitals 
This work 

orbitals 
This work 

3-coordinate Hybrid 

4-coordinate Hybrid 

5-coordinate Hybrid 

6-coordinate Hybrid 

d2 bent 

Linear* 

d3 trigonal 
plane 

D3h 

d4 tetragonal 
pyramid 

Tetrahedral* 

d5 pentagonal 
pyramid 

TBP* 

d5s mixed 

Octahedral* 

d2 bent 

Linear* 

d3 trigonal 
plane 

Dah 
d4 tetragonal 

pyramid 
Tetrahedral* 

d4s SPY 

TBP* 

d4sp trigonal 

Octahedral* 
prism 

and-ligand forces which, as we have seen above, with some 
exceptions take on a secondary role. 

The main emphasis in the present scheme for transition 
metal systems lies with a regime where the most stable ge- 
ometry is that in which the unoccupied d orbitals have the 
largest net destabilization. This is to be contrasted with the 
usual concept where all occupied orbitals have the maximum 
net stabilization. These two standpoints are of course equally 
valid although from the point of view of calculating the 
equilibrium geometry the present approach is considerably 
simpler. For a system in which the central atom is surrounded 
by n u ligands the total u interaction for each of the bonding 
and antibonding sets is equal to nPuSu2. Thus for a four- 
coordinate species with the 220 configuration, for example, 
in the tetrahedral geometry the destabilization of the d(t2) set 
is equal to 4/3PuSu2. On distorting the geometry to square 
planar this degeneracy is split and the destabilization of dXLp 
is now 3PS$ and that of dz2 is PUS$. Thus the square-planar 
geometry is favored over the tetrahedral for the 220 con- 
figuration because either (i) the highest energy d orbital 
(unoccupied) has a larger destabilization (3PuSu2 compared 
with 1.3P0Su2) or (ii) the sum total destabilization energy of 
the occupied d orbitals is less (PUS$ compared with 2.6PuSu2). 
The behavior of the occupied d orbitals on distortion was used 
to rationalize qualitatively the minimum internal energy 
geometry in our previous study.3 Note that this latter approach 
is different from one in which the energy change of all occupied 
orbitals (whether predominantly ligand or metal) is considered. 
The properties of Z(u) in eq 5 readily show the equivalence 
of all three approaches. The total stabilization of the ligand 
orbitals is nPuSu2 irrespective of geometry. The geometry- 
determining factor is simply the differential destabilization 
of the system by occupation of metal-ligand antibonding 
orbitals (predominantly metal d). In contrast to the VSEPR 
approach for main-group systems, the present method is also 
applicable to the geometries of excited electronic states. For 
example, the cis-divacant structure is suggested for the 200 
electronic ground state but a square-planar geometry is 
predicted for the excited state with a configuration of 110. This 
applies to both singlet and triplet states; the model only takes 
orbital occupancy into account. Similarly for the excited state 
112, arising from a ground-state configuration 21 1, the tet- 
rahedral geometry is favored (Z(cr) = 2.7PuSu2) over the 
cis-divacant (Z(u) = 1 . 5 P S 2 )  and square-planar @(a) = 
1 .0PuSu2) structures. A knowledge of these excited-state 
geometries should be of great interest in photochemical studies 
of transition metal species and as we have noted above is able 
to rationalize a lot of the photochemistry of Cr(C0)5. This 
study has centered around binary systems. These have the 
advantage that the minimum-energy geometry required by eq 

d2 bent 

Linear* 

d3 trigonal 
plane 

Dah 

d3s tetrahedral 

Tetrahedral 

d3sp TBP 

TBP 

d3sp2 mixed 

Octahedral* 

d2  bent 

Bent 

d*p trigonal 
pyramid 

dzsp irreg 

Cis divacant 

d2sp2 SPY 

SPY 

d2sp3 octahedral 

Octahedral 

c3u 

tetrahedron 

ds bent sp linear 

Linear* Linear 

dsp unsym sp2 trigonal 
plane plane 

C,U(T) D3h 

dsp’ sq sp3 tetrahedral 
planar 

Sq planar Tetrahedral 

d’sp3 TBP 

SPY: see text 

Octahedral Octahedral 

5 is independent of the value assigned to Pu. If MYn& 
systems are considered, then the relative sizes of the products 
S,(X)/3,(X) and S,(Y)&(Y) need to be included. The ap- 
plicability of the method to these cases will be discussed 
separately in another publication. 

Finally we may formulate a set of rules with which to predict 
the angular geometries of these transition metal systems. 

(1) Neglect any electrons in the lowest two d orbitals. The 
angular geometry is determined by the occupation numbers 
of the three highest energy orbitals. 

(2) If the occupation numbers are symmetrical (000, 11 1, 
or 222), then the VSEPR geometry will be observed. 

(3) If a hole exists in the highest energy orbital (220, 221, 
210, 1 lo), then the structure will be that of maximum overlap 
with the lobes of the d+p orbital. (A structure intermediate 
between this geometry and the VSEPR one may be observed 
for 22 1 .) 

(4) If two holes exist symmetrically in the two highest 
energy orbitals (200, 211, loo), then the structure will be that 
based on an octahedron containing the maximum number of 
cis ligands. (A structure intermediate between this geometry 
and the VSEPR one may be observed for 21 1 .) 

For excited-state geometries which are not accommodated 
in the above discussion (e.g., 112) recourse must be made to 
calculation of Z(u) by eq 5. 
Conclusion 

In the preceding sections it has been shown that the “pair 
repels pair” model of main-group stereochemistry needs to be 
modified to include the “hole attracts pair” forces which arise 
from eq 5 when central atom-ligand (specifically in this paper 
transition metal-ligand) antibonding orbitals are occupied. The 
hole-pair structures appear to be observed when the energy 
differences from the regular VSEPR geometry calculated via 
eq 5 are large and should be seen for all three- and four- 
coordinate species with electron configurations 220,200, 2 10, 
110, and 100 and five-coordinate species with the configu- 
rations 200,210, and 100. For the configurations 000, 111, 
and 222 hole-pair forces are independent of angle and the 
VSEPR structures are observed. For systems where the energy 
differences between the holepair and ligand-ligand structures 
are small, intermediate geometries are possible, e.g., con- 
figurations 221 and 21 1. For the five-coordinate 220 case 
where this energy difference is very small, the VSEPR ge- 
ometry (D3h) is observed accompanied by rapid ligand ex- 
change via the most stable hole-pair geometry (C4v). 

Appendix. Binomial Expansion of the Secular Determinant 
We take the secular determinant IHij - SijEl = 0 and make 

the common assumption that Si] = 611. Thus for the present 
case where we consider the interaction between the dx+2 and 
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dzz orbitals on the metal with the correct linear combinations 
of ligand orbitals, the expanded determinant becomes 
__ 
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the C3,) geometry may be shown to be favored relative to the 
T shape for such electronic configurations. 
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